Application of Novel Conserving Immersed Boundary Method to Moving Boundary Problem

نویسنده

  • S. N. Hosseini
چکیده

A new conserving approach in the context of Immersed Boundary Method (IBM) is presented to simulate one dimensional, incompressible flow in a moving boundary problem. The method employs control volume scheme to simulate the flow field. The concept of ghost node is used at the boundaries to conserve the mass and momentum equations. The Present methodimplements the conservation laws in all cells including boundary control volumes. Application of the method is studied in a test case with moving boundary. Comparison between the results of this new method and a sharp interface (Image Point Method) IBM algorithm shows a well distinguished improvement in both pressure and velocity fields of the present method. Fluctuations in pressure field are fully resolved in this proposed method. This approach expands the IBM capability to simulate flow field for variety of problems by implementing conservation laws in a fully Cartesian grid compared to other conserving methods. Keywords—Immersed Boundary Method, conservation of mass and momentum laws, moving boundary, boundary condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

An immersed-boundary method for compressible viscous flow and its application in gas-kinetic BGK scheme

An immersed-boundary (IB) method is proposed and applied in the gas-kinetic BGK scheme to simulate incompressible/compressible viscous flow with stationary/moving boundary. In present method the ghost-cell technique is adopted to fulfill the boundary condition on the immersed boundary. A novel idea “local boundary determination” is put forward to identify the ghost cells, each of which may have...

متن کامل

A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows

Abstract   The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...

متن کامل

Radial Basis Function (RBF)-based Interpolation and Spreading for the Immersed Boundary Method

Immersed boundary methods are efficient tools of growing interest as they allow to use generic CFD codes to deal with complex, moving and deformable geometries, for a reasonable computational cost compared to classical bodyconformal or unstructured mesh approaches. In this work, we propose a new immersed boundary method based on a radial basis functions framework for the spreading-interpolation...

متن کامل

A novel boundary condition for the simulation of the submerged bodies using lattice boltzmann method

In this study, we proposed a novel scheme for the implementation of the no-slip boundary condition in thelattice Boltzmann method (LBM) . In detail , we have substituted the classical bounce-back idea by the direct immersed boundary specification . In this way we construct the equilibrium density functions in such a way that it feels the no-slip boundaries . Therefore , in fact a kind of equili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013